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their association with environmental and experiential in-
fluences is taken into account.

Variations in ADHD symptoms have also been attrib-
uted to environmental effects (4–6) and a wide range of 
adverse experiential factors that involve CNS damage (7). 
Artificial food additives are among putative environmen-
tal toxins adversely affecting the CNS that are postulated 
to place children at risk for ADHD (8–10). A meta-analysis 
of double-blind, placebo-controlled studies has indicated 
that for children with ADHD, artificial food colors have a 
significantly adverse impact (11). There is less clear evi-
dence for the adverse effect of such additives on behav-
ior in children in the general population, and no studies 
have specifically attempted to identify whether there is 
a subgroup of children in the population vulnerable to 
their effects. An adverse effect of food additives in 3-year-
old children in the general population has been shown 
in double-blind controlled challenges (12). The study on 
which this article is based has replicated these findings on 
3-year-old children and extended them to 8/9-year-old 
children (13).

Attention deficit hyperactivity disorder (ADHD) in 
children is characterized by symptoms of inattention, im-
pulsivity, and overactivity. There are marked individual 
differences in these behaviors in the general population. 
A diagnosis of ADHD is usually reserved for those children 
with severe symptoms and a pervasive pattern of behavior 
from a young age that impairs other aspects of function-
ing, such as educational attainment (1).

Genetic factors are a major contributor to these individ-
ual differences in ADHD symptoms (2). A number of genes 
contributing to this effect have been identified, especially 
those influencing the dopamine system (e.g., dopamine 
D4 receptor [DRD4] and dopamine transporter [DAT1] 
genes). Other genes in the serotonin and noradrenergic 
neurotransmitter systems have also been implicated (2). 
However, the size of the effects identified are such that 
they account for only a small portion of the genetic risk 
suggested by quantitative genetic analyses. To date, five 
genome-wide association studies on ADHD have failed to 
identify other major genes of significant effect (3). The full 
effects of these genes may only become apparent when 
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Objective: Food additives can exacer-
bate ADHD symptoms and cause non-
immunoglobulin E-dependent histamine 
release from circulating basophils. How-
ever, children vary in the extent to which 
their ADHD symptoms are exacerbated by 
the ingestion of food additives. The au-
thors hypothesized that genetic polymor-
phisms affecting histamine degradation 
would explain the diversity of responses 
to additives.

Method: In a double-blind, placebo-con-
trolled crossover trial, challenges involv-
ing two food color additive and sodium 
benzoate (preservative) mixtures in a 
fruit drink were administered to a gen-
eral community sample of 3-year-old chil-
dren (N=153) and 8/9-year-old children 
(N=144). An aggregate ADHD symptom 
measure (based on teacher and parent 
blind ratings of behavior, blind direct ob-
servation of behavior in the classroom, 
and—for 8/9-year-old children only—a 

computerized measure of attention) was 
the main outcome variable.

Results: The adverse effect of food addi-
tives on ADHD symptoms was moderated 
by histamine degradation gene polymor-
phisms HNMT T939C and HNMT Thr105Ile 
in 3- and 8/9-year-old children and by a 
DAT1 polymorphism (short versus long) in 
8/9-year-old children only. There was no 
evidence that polymorphisms in catechol-
amine genes COMT Val108Met, ADRA2A 
C1291G, and DRD4-rs7403703 moder-
ated the effect on ADHD symptoms.

Conclusions: Histamine may mediate 
the effects of food additives on ADHD 
symptoms, and variations in genes influ-
encing the action of histamine may ex-
plain the inconsistency between previous 
studies. Genes influencing a range of neu-
rotransmitter systems and their interplay 
with environmental factors, such as diet, 
need to be examined to understand ge-
netic influences on ADHD symptoms.

The Role of Histamine Degradation Gene 
Polymorphisms in Moderating the Effects of Food 

Additives on Children’s ADHD Symptoms
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that this reflected linkage disequilibrium between this SNP 
and the Thr105Ile SNP was not controlled for.

Given the difficulties in accurately genotyping large 
variable number tandem repeat polymorphisms using 
DNA from cheek cells (the only means of access to DNA for 
general population samples of children) we used a SNPs-
based strategy. Consequently, results are presented here 
for two SNPs in HNMT (Thr105Ile [rs1801105] and T939C 
[rs1050891]), one SNP in COMT (Val108Met [rs4680]), one 
SNP in DRD4 (rs740373), and one SNP in ADRA2A -1291>G 
(ADRA2A C1291G [rs1800544]). It was also possible to gen-
otype one variable number tandem repeat: the short (9 or 
less repeats) and long (10 repeats or more) forms of DAT1. 
Extensive validation was undertaken to assess the feasibil-
ity of genotyping the DRD4 repeat. However this revealed 
that there was bias in favor of amplification of shorter al-
leles. Therefore the SNP rs740373 was genotyped instead, 
since a significant association of the C allele with ADHD 
(p=0.008) has been reported (24) and there is evidence for 
linkage disequilibrium between this SNP with the exon III 
polymorphism (p=0.013) (25).

Method
The study was registered as a clinical trial with Current Con-

trolled Trials (Registration number ISRCTN74481308) and was 
approved by the Local Research Ethics Committee (Ref. No. 04/
Q1702/61). After providing full information about the study and 
its dietary implications, written informed consent was obtained 
from the parents. Each participating early years setting received 
£250 and each school £500 as a contribution toward school funds 
for the benefit of all children.

Participants

Details of recruitment and participation in the study are pro-
vided in figures S1 and S2 in the data supplement that accompa-
nies the online version of this article. The sample of 3-year-old 
children was drawn from a population of preschool children aged 
between 3 years and 4 years 2 months registered in early years 
settings (nurseries, day nurseries, preschools, playgroups) within 
the Southampton City Council area. The older sample was drawn 
from children between 8 and 9 years of age attending schools 
within the city of Southampton.

Parents who returned an expression of interest form were 
contacted by phone and a convenient time for a home visit was 
arranged. The study dietician also obtained a report based on 
24-hour recall by the parent of the child’s prestudy diet, which 
allowed an assessment of baseline levels of the number of foods 
containing additives consumed by the child in the previous 24-
hour period.

Of the 3-year-old children enlisted in the study (N=153), 16 
(10.5%) failed to complete. In only one case was this related to 
problems with the child’s behavior. Of the 8/9-year-old children 
enlisted in the study (N=144), 14 (9.7%) failed to complete. In no 
case was this related to problems with the child’s behavior. For 
both samples, age and gender of the child and marital status of 
the parents had no effect on study completion, and children were 
no more likely to drop out during active as compared to placebo 
challenge weeks.

Study Design and Challenge Protocols

Children were entered into this randomized, double-blind, 
placebo-controlled food challenge with a within-subject cross-

It is uncertain which mechanisms might mediate these 
effects or which factors may make children more or less 
susceptible. Histamine is an interesting candidate neu-
rotransmitter system for a number of reasons. The activity 
of central histamine H3 receptors have been shown to af-
fect inhibition learning, to increase hyperactivity levels in 
mouse models, and to promote dopamine release in the 
frontal cortex (14). There is evidence that histamine might 
mediate the effects of artificial food colors on ADHD symp-
toms. Azo dyes have been shown to provoke urticaria in 
some individuals, independent of whether or not they are 
aspirin sensitive, providing clinical evidence that artificial 
colors may result in histamine release (15–17). It has been 
proposed that the effect of food additives is likely to be a 
nonspecific pharmacological effect that would be similar 
in children irrespective of their atopic status or other char-
acteristics (12, 18). For these reasons histamine release and 
its effects on the CNS may play a crucial role in mediating 
the effects of artificial food colors on ADHD symptoms.

The present study examines whether the effect of food 
additives on ADHD symptoms is moderated by genetic dif-
ferences between children. Genetic polymorphisms were 
selected from the dopamine (dopamine transporter [DAT1] 
and dopamine D4 receptor [DRD4]) and catechol O-meth-
yltransferase (COMT) genes and adrenergic neurotrans-
mitter systems (adrenergic receptor alpha 2A [ADRA2A]), 
since these have previously been implicated in ADHD (2, 
19, 20). Since there is a suggestion that histamine may be 
involved in the effects of food additives, genetic polymor-
phisms from this system were also included (histamine N-
methyl transferase [HNMT]) to address this hypothesis.

The first single nucleotide polymorphism (SNP) of 
HNMT, Thr105Ile (rs1801105), is the only nonsynonymous 
polymorphism identified in the gene in the Caucasian 
population. It is associated with reduced thermal stabil-
ity and decreased activity of HNMT (21, 22). HNMT T939C 
(rs1050891) is in the 3′ untranslated region of the gene and 
correlates with HNMT activity, although given the strong 
linkage disequilibrium between the Thr105Ile SNP and 
the T939C SNP, it is not possible to distinguish the effects 
of one independent of the other (21). The strong linkage 
disequilibrium between these two SNPs is confirmed by 
analysis of the HapMap phase III data for the Caucasian 
population, which shows the existence of a strong linkage 
disequilibrium block across the 3′ end of the HNMT gene. 
However it has been established that the C939T/ rs1050891 
polymorphism (also referred to as 939A>G) does appear to 
have an independent effect on HNMT activity. Using in vi-
tro mRNA stability assays, Kim et al. (23) showed that the C 
allele correlated with increased stability of transcripts con-
taining the HNMT 3′ untranslated region and consequent-
ly increased enzyme activity. In addition, in vivo studies of 
HNMT activity in patients with aspirin-intolerant urticaria 
also demonstrated an increase in HNMT activity and de-
creased histamine release in basophils of patients carrying 
one or two copies of the C allele. However, the possibility 
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same as for the 3-year-old children: the Abbreviated ADHD Rat-
ing Scale–IV (Teacher version) and the Classroom Observation 
Code. Parental ratings of behavior were obtained using a parent 
version of the Abbreviated ADHD Rating Scale–IV (unpublished 
1994 instrument, G.J. DuPaul et al.), which has the same format as 
the teacher version. The final component was Connors’ Continu-
ous Performance Test II (34). This is a test using visual stimuli of 
14 minutes duration and is widely used to evaluate attention and 
the response inhibition component of executive control. Four 
measures (standard error of reaction time, percentage of com-
mission errors, d′, and b) were used to derive a weekly Continuous 
Performance Test II aggregate score. This subset of indicators has 
been shown to be highly correlated with the ADHD Rating Scale 
employed in this study (35).

Statistical Analysis

The weekly scores from the teacher, parent, Classroom Obser-
vation Code, and, for 8/9-year-old children only, the Continuous 
Performance Test II measures for each child were standardized to 
time 0 at baseline [T0]) for the same measure:

Weekly standardized (z) aggregate score=

The primary outcome measure, the global hyperactivity ag-
gregate, is an unweighted aggregate of the weekly teacher, par-
ent, Classroom Observation Code, and Continuous Performance 
Test II z scores. This was calculated only when at least two (for 
3-year-old children) or three (for 8/9-year-old children) of these 
component behavior scores were present for any week, one of 
which had to be the Classroom Observation Code score. A high 
global hyperactivity aggregate indicates more ADHD symptoms. 
Preliminary analyses using a Kolmogorov-Smirnov one-sample 
test showed that these aggregate scores and the difference be-
tween the scores under placebo and active mix challenges were 
normally distributed.

Linear mixed-model methods (36, 37), with a compound sym-
metry covariance matrix for 3-year-old children and unstruc-
tured covariance matrix for 8/9-year-old children (the best fit 
models for each age group), were used to analyze data. The study 
was powered to detect differences between the active and pla-
cebo periods so that in each case the effects of mix A and mix 
B can be compared to the effect of placebo. With a sample of 
120 children there was 80% power at α=0.05 to identify an effect 
size of 0.32, i.e., the magnitude of the difference in mean score 

(score X – mean X at T0)

SD at T0

over. There were two active mixes of additives. Mix A contained 
sunset yellow, carmoisine, tartrazine, and ponceau 4R; mix B con-
tained sunset yellow, carmoisine, quinoline yellow, and allura red 
AC. In addition, both additive mixes incorporated sodium benzo-
ate, which had been included in the challenge in our earlier study 
(12) and in previous studies (10, 26). After a week on their normal 
diet, the target food colors and sodium benzoate were excluded 
from their diet over a 6-week period when challenge and with-
drawal occurred as follows: week 0: baseline/normal diet; week 1: 
withdrawal period but receiving placebo; weeks 2, 4, and 6: chal-
lenge with randomization to two active and one placebo period; 
weeks 3 and 5: washout continuing on placebo. Full details of the 
challenges have been published previously (13) and are also given 
in supplementary data. We set a minimum of 85% of drinks con-
sumed to constitute a per protocol population and the analyses in 
the present paper were restricted to these 132 3-year-old and 119 
8-year-old children.

Global Hyperactivity Aggregate

For the 3-year-old children, three measures of behavior were 
used to calculate the global hyperactivity aggregate. The first was 
the Abbreviated ADHD Rating Scale–IV (Teacher version) (27, 28). 
A total score was obtained for 10 of the 18 items (inattentive=5, 
hyperactive=5) in this questionnaire, which was completed by the 
early year setting practitioner who described the frequency of the 
specific behaviors displayed over the past week for each week of 
the study.  The second was a parent behavior measure: Abbrevi-
ated Weiss-Werry-Peters hyperactivity scale (29) .This scale has 
been used in a number of studies to assess ADHD symptoms (30, 
31). Interparent agreement is good (r=0.82) (32). Parents rated 
their child’s behavior over the previous week for 7 items previ-
ously used (12) and a total score was obtained.  The third mea-
sure was the Classroom Observation Code (33). This instrument 
assesses the occurrence of 12 mutually exclusive behaviors dur-
ing structured didactic teaching and during periods of indepen-
dent work under teacher supervision. The interrater reliability 
of the method, tested prior to and in mid-study, exceeded 0.87. 
Each child was observed for a total duration of 24 minutes each 
week (three observation sessions each of 8 minutes duration) 
and a total weekly mean score was derived from the total score 
over each session. The code was slightly modified for use in the 
present study, since preschool children in the U.K. have relatively 
little structured or didactic teaching sessions and tend to engage 
in “activities” rather than “tasks.”

For the 8/9-year-old children, four measures of behavior were 
used to calculate the global hyperactivity aggregate. Two were the 

TABLE 1. Association of Genotype and Global Hyperactivity Aggregate at Baseline for 3- and 8/9-Year-Old Children Before 
Consumption of Challenge Drinks Containing Food Additive Mixtures and Sodium Benzoate 

Group and Genotype

SNP Present SNP Absent Main Effect of Genotype

N Mean SD N Mean SD t df p

3-year-old children
HNMT Thr105Ile (T allele) 30 0.09 0.66 74 –0.17 0.64 1.83 102 0.07
HNMT T939C  (C allele) 39 0.11 0.61 62 –0.21 0.67 2.36 99 0.02
COMT Val108Met (A allele) 76 –0.13 0.64 27 0.03 0.70 1.09 101 0.28
ADRA2A C1291G  (G allele) 52 –0.14 0.72 50 –0.06 0.60 0.62 100 0.54
DAT1 (short allele) 63 –0.11 0.71 41 –0.08 0.59 0.25 102 0.80
DRD4 rs740373 (C allele) 26 0.31 0.62 74 –0.02 0.62 2.09 98 0.04

8/9-year-old children
HNMT Thr105Ile (T allele) 23 –0.24 0.77 83 0.08 1.09 1.35 104 0.18
HNMT T939C  (C allele) 44 0.09 1.17 63 –0.05 0.91 0.73 105 0.47
COMT Val108Met (A allele) 79 0.03 0.94 28 0.01 1.26 0.04 105 0.99
ADRA2A C1291G  (G allele) 47 –0.04 1.11 59 0.06 0.97 0.51 104 0.61
DAT1 (short allele) 75 0.03 1.10 32 –0.04 0.86 0.31 105 0.76
DRD4 rs740373 (C allele) 39 0.00 0.76 67 –0.02 1.13 0.10 104 0.92
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old children. We have previously shown that there were 
significant effects of challenge type on global hyperac-
tivity aggregate (13). Here, interest centers on the in-
teraction between challenge type and genotype. These 
interaction effect estimates in Table 2 are based on the 
difference in global hyperactivity aggregate score while 
challenged by an additive mix and by a placebo and spe-
cifically whether such an effect is different for the two 
genotypes for each gene (i.e., it estimates the magnitude 
of the difference of two differences and the associated 
95% CI). If the latter include zero then the interaction is 
not significant at the 5% level. The interpretation of the 
interactions can be determined from the mean estimated 
marginal global hyperactivity aggregate values presented 
in Figure 1 (3-year-old children) and Figure 2 (8/9-year-
old children). To test the effect of the genotype-by-chal-
lenge interactions, a number of other factors that may be 
related to overall the global hyperactivity aggregate need-
ed to be taken into account in the mixed models analy-
sis and were slightly different for the two age groups. In 
total, these included baseline global hyperactivity aggre-
gate scores, age, gender, maternal education level, and 
prestudy diet. However, for the 3-year-old children these 
were gender, baseline global hyperactivity aggregate, 
prestudy diet, in addition to challenge and genotype. In 
this age group there were no significant interactions be-
tween these factors and the effects of challenge. For the 
8-year-old children the factors in the analysis were week 
during study and baseline global hyperactivity aggregate 
in addition to challenge and genotype. In this age group 
there were no significant interactions between these fac-
tors and the effects of challenge.

Considering 3-year-old children first, the estimated 
marginal means plotted in Figure 1 show that the effects of 

changes (in SD units), a slightly smaller effect size to that found 
previously (12).

Genotyping

In the course of the study, buccal swabs were collected from 
the children for genotype analysis. These samples were refriger-
ated and packed in ice to be sent to the laboratory for DNA ex-
traction and genotyping. The genotyping of the HNMT Thr105Ile 
(rs1801105), HNMT T939C (rs1050891), COMT Val108Met 
(rs4680), ADRA2A C1291G (rs1800544), and DRD4 (rs740373) 
SNPs was performed by Kbiosciences (Herts, U.K.) using a KASPar 
assay system (http://www.kbioscience.co.uk).

The variable number tandem repeat analysis of DAT1 was per-
formed in our laboratory using a total volume of 10 µl, including 
20 ng DNA template, 2 µl 5X Herculase II buffer containing 2 mM 
MgCl2, 0.5 µmol/liter of each primer, 0.1 µl of Herculase II DNA 
polymerase (Stratagene), 8% DMSO, 1 M Betaine, and 250 µmol/
liter of each deoxynucleotide triphosphates. The polymerase 
chain reaction conditions were 3 minutes at 98°C, followed by 
35 cycles each of 20 seconds at 98°C, 20 seconds at 65°C, 30 sec-
onds at 72°C, and finally 3 minutes at 72°C in 96-well plates. DAT1 
primer sequences were DAT1f 5′- GCC ACT CAG GCA GCC TGT 
G-3 and DAT1r 5′-6FAM- AGG ACC CTC ATG GCC TTG-3′. Am-
plified fragments were sized using capillary electrophoresis on a 
CEQ8800 (Beckman Coulter, UK). Genotype data were assessed 
for concordance with the Hardy–Weinberg equilibrium law using 
a χ2 test with one degree of freedom. All genotypes were in were in 
Hardy–Weinberg equilibrium.

Results

There was evidence that the HNMT T939C and the DRD4 
rs740373 polymorphisms were related to the overall level of 
the global hyperactivity aggregate at baseline in the 3-year-
old children (Table 1). There were no significant effects of 
any of the polymorphisms on the overall global hyperactiv-
ity aggregate level at baseline in the 8/9-year-old children.

The results of the general linear mixed model analysis 
are summarized in Table 2 for both the 3- and 8/9-year-

TABLE 2. General Linear Mixed Model Analysis Estimates for Global Hyperactivity Aggregate for Challenge-by-Genotype 
Interaction in 3- and 8/9-Year-Old Children Consuming Challenge Drinks Containing Food Additive Mixtures and Sodium 
Benzoatea

Genotype

Challenge Typeb

Mix A Versus Placebo Mix B Versus Placebo

3-Year-Old Children 8/9-Year-Old Children 3-Year-Old Children 8/9-Year-Old Children

Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p

HNMT Thr105Ile –0.53 –1.04 to 
–0.02

0.04 –0.10 –0.35 to 
0.14

0.40 –0.40 –0.92 to 
0.12

0.13 –0.24 –0.48 to 
0.00

0.05

HNMT T939C –0.46 –0.94 to 
0.02

0.06 –0.24 –0.44 to 
–0.04

0.02 –0.23 –0.72 to 
0.25

0.34 –0.23 –0.43 to 
–0.03

0.03

COMT Val108Met –0.23 –0.75 to 
0.29

0.38 0.02 –0.20 to 
0.24

0.87 0.12 –0.41 to 
0.64

0.66 0.02 –0.20 to 
0.24

0.86

ADRA2A C1291G 0.01 –0.44 to 
0.47

0.96 –0.05 –0.26 to 
0.15

0.61 0.20 –0.26 to 
0.65

0.39 0.00 –0.21 to 
0.20

0.97

DAT1 0.08 –0.39 to 
0.54

0.74 0.11 –0.11 to 
0.34

0.32 –0.30 –0.76 to 
0.16

0.20 0.23 0.01 to 
0.45

0.05

DRD4 rs740373 –0.27 –0.82 to 
0.27

0.33 –0.08 –0.29 to 
0.13

0.44 –0.25 –0.80 to 
0.30

0.37 –0.14 –0.34 to 
0.07

0.19

a The main effects of challenge type, genotype, week during study, gender, global hyperactivity aggregate in baseline week, number of addi-
tives in pre-trial diet, maternal educational level, and social class were included in the model but are not tabulated.

b Mix A contained sunset yellow, carmoisine, tartrazine, and ponceau 4R; mix B contained sunset yellow, carmoisine, quinoline yellow, and 
allura red AC. Both food additive mixtures incorporated sodium benzoate.



STEVENSON, SONUGA-BARKE, McCANN, ET AL.

AJP in Advance  ajp.psychiatryonline.org 5

tion just failed to reach significance (p=0.06). The effects 
of mix B (relative to placebo) were the same regardless of 
the HNMT polymorphisms in this age group. The effects 
of mix A and mix B were not moderated in 3-year-old chil-

mix A (relative to placebo) on ADHD symptoms were lim-
ited to those children not carrying T (Ile) allele of HNMT 
Thr105Ile (p=0.04) and to children not carrying the car-
rying the C allele of HNMT T939C, although this interac-

FIGURE 1. Effect of Genotype in Moderating Impact of Food Additive Challenge on Global Hyperactivity Aggregate in 
3-Year-Old Childrena
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a Mix A contained sunset yellow, carmoisine, tartrazine, and ponceau 4R; mix B contained sunset yellow, carmoisine, quinoline yellow, and 
allura red AC. Both food additive mixtures incorporated sodium benzoate. Mean est. marg.: mean estimated marginal mean when gender, 
baseline global hyperactivity aggregate, levels of food additives in the pre-study diet, challenge, and genotype were included in the mixed 
model analysis.
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ADRA2A C1291G, or DRD4 rs740373. However, as for the 
3-year-old children, interactions were present for HNMT 
Thr105Ile and HNMT T939C. For mix A (relative to placebo) 
the effects were limited to those without the C allele of HNMT 

dren by the COMT Val108Met, ADRA2A C1291G, DAT1 or 
DRD4 rs740373 polymorphisms.

For the 8/9-year-old children, there were no significant 
genotype-by-challenge interactions for COMT Val108Met, 

FIGURE 2. Effect of Genotype in Moderating Impact of Food Additive Challenge on Global Hyperactivity Aggregate in 
8/9-Year-Old Childrena
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a Mix A contained sunset yellow, carmoisine, tartrazine, and ponceau 4R; mix B contained sunset yellow, carmoisine, quinoline yellow, and 
allura red AC. Both food additive mixtures incorporated sodium benzoate. Mean est. marg.: mean estimated marginal mean when baseline 
global hyperactivity aggregate, week during study, challenge, and genotype were included in the mixed model analysis.
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well as infections. This would explain the frequent claim 
that food allergy/intolerance is a cause of ADHD symp-
toms and the effects of infections in aggravating aberrant 
behavior (44). This clearly supports a potential target for 
therapeutic intervention in ADHD focused on the H3 re-
ceptor (45, 46).
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